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SHOULD A PARK BE AN ISLAND?*
ROBERT STEPHEN CANTRELLt anp CHRIS COSNERY

Abstract. The object of this article is to study the interaction of interspecies competition and environ-
mental heterogeneity in the context of refuge or preserve design. Specifically, situations in which the primary
preserve is surrounded by partially disrupted secondary successional environments are compared to those
in which the surroundings of the preserve are completely disrupted and hence inhospitable to both primary
and secondary biomes. The somewhat surprising conclusion is reached (suggested in the ecological literature)
that in some cases complete disruption of surroundings is preferable to partial disruption if the partially
disrupted “buffer zones™ benefit some species more than their competitors. The modelling approach is based
on reaction-diffusion equations with variable coefficients, and the analysis relies on finding criteria for
coexistence or extinction in terms of elliptic eigenvalue problems and then estimating the eigenvalues in
terms of environmental parameters.
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1. Intreduction. The object of this article is to study the interaction of interspecies
competition and environmental heterogeneity in the context of refuge or preserve
design. Our work is motivated by Janzen’s discussion of “the eternal external threat™
[15] to nature preserves posed by the presence of partially disrupted habitats surround-
ing them. In [14] and [15], Janzen describes a wide range of different types of
environmental interference that may occur; we focus on fairly direct competitive effects
in situations where a conserved region of, for example, pristine forest may be sur-
rounded either by areas of secondary successional habitat or by closely cultivated

‘regions, depending on the choice of resource management policies. Our approach is
based on a class of diffusive Lotka-Volterra competition models with spatially varying
coefficients. Obviously, such models can reflect only a greatly simplified picture of the
true biological interactions, but they provide a means of assessing the qualitative effects
of external interference on a preserve. The main conclusion suggested by the analysis
is that for certain-parameter ranges the sort of effects described in [14], [15] are
predicted by the models.

The mathematical techniques used here represent a synthesis of those used in [2],
[71, [8], [10] to study diffusive competition models with constant coefficients and those
used in [4]-[6], [20] to study diffusive logistic equations with spatially varying
coefficients. (For background, see [9], [16], [18], [22].) The basic methodologyis-to
reduce questions about the dynamics of the reaction-diffusion model (specifically,
whether the two populations being considered can coexist in the long term) to questions
about the principal eigenvalues of associated linear elliptic problems. The reduction
is effected via methods of nonlinear analysis. We then estimate the relevant eigenvalues
in terms of parameters describing habitat quality and arrangement, diffusion rates, and
the strength of competition. The eigenvalue estimates enable us to identify certain
parameter ranges for which coexistence is assured and others for which one of the
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220 R S. CANTRELL AND C. COSNER N e
populations is driven to extinction by its competitor. We observe that, in some cases,
changing the parameter describing the habitat surrounding a preserve while leaving
other parameters fixed can shift the predictions of the model from persistence to
" extinction for the population we wish to preserve. Specifically, if the growth rates of
both competitors remain high within a preserve but the growth rate of one is kept low
in the surrounding region while the growth rate of the other is increased to the same
level as within the preserve, then the second competitor can drive the first to extinction,
even within the preserve. It is in this sense that our models support the discussion in

[14], [15]. Note that, for such an effect to occur, the presence of diffusion or some a
sort of dispersal mechanism is crucial, since otherwise conditions outside the preserve P
could not affect events inside. This is a major theme of [15]. At this point, a caveat is B
in order: our conclusions do not describe all species in all situations. The effects
described by Janzen in [15] were observed in tropical regions. They are interesting = *

partly because they contrast with the usual orderly succession typically observed in
termperate regions where the climax forest may eventually competitively exclude
“pioneer” or secondary successional species rather than vice versa. These data suggest
that the phenomenon we wish to model depends on specific characteristics of the
competitors, such as their relative growth and dispersal rates and competitive abilities.
Thus, our analysis should only describe some effects occurring in some situations. As
is noted in [6], any effort at refuge design must be based on detailed biological
knowledge of the specific situation. Our models merely support the view that the sort
of effects described in [15] can sometimes occur if there is an appropriate relation
between the growth rates of the species involved and their competitive interactions
and hence should be seriously considered when management policies are being
developed. Some ideas related to those discussed here are treated in [17] and [21]. In .
[171some very general existence results and associated eigenvalue estimates are derived;
they do not, however, apply to the specific problems discussed here. The models in
[21] have spatially constant growth rates but variable interaction coefficients or carrying :
capacities and are designed to describe somewhat different phenomena. Much of the
mathematical analysis in [21] is numerical, but the biological discussion is detailed,
and numerous references are given to the ecological literature. :
Our main objectives in this article are to give a qualitative analysis of the simplest
models that capture the essential features of the phenomenon described by Janzen and
to develop the mathematical machinery needed for later quantitative analysis. To keep
things simple, we have introduced spatial variation in only two of the parameters of
the model system. Our methods extend to cases wheré other parameters also vary with
location, but to treat those cases would involve a moderate increase in the complexity
of various conditions that are already fairly complicated in the simplest case. The
~ problem with such cases is not so much in the mathematical analysis but in the
interpretation of the analysis in biological terms. Some more general ‘models for a
single population are discussed in [5]. We hope eventually to treat cases combining
some of the spatial effects discussed there and in [4], [6], [21] with those described )
_here, but we anticipate that the mathematical analysis will be more involved, as well i
as more difficult to interpret biologically. Most of the analytic methods we use in this
article were developed during the 1980s or early 1990s by various researchers, including ‘
_ourselves. There are some technical refinements in this article that are new. It is also
 our intention to explore the quantitative aspects of our models in more detail in future
work. We plan to collaborate with ecologists:in trying to determine appropriate
parameter ranges for real situations and to perform numerical computations with the

" models using those parameter ranges. The mathematical analysis of the present article
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SHOULD A PARK BE AN ISLAND? 221

provides the framework for numerical computation, but a thorough examination of
the quantitative aspects of the models would require at least another article of compar-
able length, so we have deferred it for now.

_ The models we consider are all derived from Lotka-Volterra competition models
with diffusion. In taking such a modelling approach, we make the implicit assumption
that the spatial and temporal scales under consideration are large enough that con-
tinuous models are appropriate. The classical Lotka-Volterra model for two competing
species is a pair of ordinary differential equations describing the dynamics of their
total populations P and Q. It may be written as

dP dQ

L (r-BP-CcQR,  QLe(r,-EP-FO)Q.

di
where Ry, R;, B, C, E, and F are positive constants. This type of model is closely
related to the logistic equation for a single population. Thus, any effects of age structure
in the populations or in their competitive interactions are lumped into the overall
average reproduction rates, competition parameters, and so on, that are represented
by R,, R,, B, C, E, and F. In the absence of the second competitor, the first satisfies .
a logistic equation dP/dt=(R,— BP)P =r,(1-P/K,)P where the intrinsic growth
rate (i.e., the per capita rate of increase in population at low density) is described by
r; = R, and the carrying capacity of the environment (i.e., the stable positive equilibrium
population) is given.by K, = R,/B. The corresponding constants for the second com-
petitor are r,= R, and K, =R,/ F. Thus, B and F quantify the strength of *“density-
dependent” self limitation in the two competitors. The coefficients C and E describe
the strength of competition between the two populations; specifically, C describes the
impact that Q has upon P, and E describes the impact of P on Q. If we were to rewrite
the original system as dP/dt=r,(1-P/K,—a,Q)P, dQ/dt=r,(1-Q/K,—a,P)Q,
then C=a,r, and E = a,r,. If C = E =0, then the two populations do not compete,
and each increases according to a logistic growth law. We may rescale the system by
taking p = BP and g = FQ); the system then becomes
d
-3% (Ri=p—cq)p, ;f= (R:—ep—q)g,

. wWhere ¢=C/F and e= E/B. In terms of the formulation of the model as a pair of
logistic equations with competitive interaction described by &, and a,, we have ¢ = o, K,
and e = a,K;. Thus, ¢ and e represent the product of the carrying capacity K for each
population times a coefficient @ measuring its impact on its competitor. In that sense,
¢ and e characterize the effects of competition, and we refer to them as competition
coefficients, 4

When the model is formulated in terms of R;, R,, ¢, and e, the condition for
coexistence becomes especially simple. The model predicts coexistence if R,—cR,>0
‘and R,—eR, >0, which is true, in particular, if the strength of competition as measured
by the size of the competition coefficients ¢ and e is small enough. (In this case, there
is coexistence in the sense that there is a globally stable positive equilibrium state
(p*, ¢%). In our more general models, we only show that there is coexistence in the
sense that both populations are bounded away from zero in the long term.) If R, ~ cR,>"
0 and R,~eR, <0, then the first species excludes the second, and, if R,—eR,>0 but
R, ~cR,<0, the second excludes the first. The case where R, ~cR,<0, R,—¢eR,<0
is more complicated. There is an unstable equilibrium (p*, g*), but generically one
species excludes the other with the winner and loser in the competition determined
by the initial conditions.
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We wish to consider the effects of dispersal and spatial variation, so we must
consider the geometry of our environment and work with population densities rather
than populations. Let Q be a bounded domain in R’ with smooth boundary and let
), be a subdomain of (2; () represents the total environment under consideration, and
Q, the part of {} we wish to consider as a refuge or preserve. Let U(x, 1) and V(x; 1)
represent the population densities of two competitors at location x € { and time ¢. If
we add the dispersal mechanism of diffusion to the basic Lotka-Volterra model we
obtain

%%]z dlAU+(Rl-BU—'CV)IJ, JRSHESS e

where d, and d, are positive constants that measure the rates of diffusion of the
competing populations. (The derivation and interpretation of reaction-diﬁusion models
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[16], and to some extent in [4]-[6], [9], [18], [20]-[22].) The parameters R,, R,, B,

C, E, and F have the same interpretations in our model as in the classical spatially”
homogeneous model. In principle, R,, R,, B, C, E, and F might all depend on both -
" x and ¢, but, for our present purposes, it suffices to allow R; and R, to depend on x, -

but the other coefficients to remain constant. A fairly simple model is adequate because
we want to describe the simplest sort of mechanism by which one competitor can. gain
an advantage on -, which leads to exclusion of the other competitor on all of
Q. If we assume that Ry(x) is large on all of Q but R,(x) is large on Q, but small on
ll"’&ll, nen we see wat tne second COIHPCU[OI’ may be avic 10 Increase lIl numoers

on -, to the point where it excludes the first on all of Q via diffusion from Q - -,, '

even if the competitors could coexist if both R, and R, were kept small on ) -Q,.
We refer to a situation where the first population thrives only in a pristine forest habitat

(©,), but the second can also inhabit (or perhaps constitute) secondary successional

habitats such as irregularly cleared brushy areas (2—Q,). If the second competitor
attains a high density on Q —,, it may disperse into £, and thus gain the advantage
in the competition there. This is the essence of the effects described in [14], [15]). There

are other mechanisms that might produce similar effects. It is plausible that, if R; and -

R; were constants but the competition coefficients C and E varied in a way that gave
one competitor an advantage in competition on part of , then the results would be
similar. However, we believe that the mechanism we have proposed is a more accurate
mathematical depiction of the processes described verbally in [15]. The Lotka-Volterra
system may be rescaled to eliminate parameters. We may divide the first equation by
d, and the second by d, and then rescale the time variable f to dt so that equations
take the form (in the new time variable)

(dy/ d))U,=AU+[(R,/dy)-(B/dy)U~(C/dy) V1U,
 V,=AV+[(Ry/d))~(E/d;)U~(F/dy) V]V.

We.can then use u=(B/d,\)U, v=(F/d,)V, c=Cd,/Fd,, e= Ed,/de,andR Ri/d;"

for i=1,2, and, as in the classncal case, we obtam
‘ (l/d)u,—Au+(R,—u ou, Av+(R2 eu—v)v,
where d=d,/d,i is the rescaled diffusion rate of the first competltor If d > 1, then the

first competxtor disperses more rapidly than the second; if d <1, the second competltor
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disperses more rapidly. We are especially interested in the case where R, and R, are
both constant on Q, and on Q-Q,, with R;=0 on Q- and with R, having a
constant value on —£), greater than or equal to zero but less than or equal to its
value on Q,. Our analysis of this case proves to be robust, so that our conclusions
remain valid if R, is positive but small on Q—,.

To perform the detailed analysis of our model system, it is convenient to write it
in the form

(1/d)u, = Au+u[rxq,(x)—u—cvl],

an v, = Av+ o[ ra(xa, (%) + Ixo-a,(x)) —eu—0] inQx(0, ),

where r, and r, are positive constants, /€ [0, 1], and, as usual, xo, and Xp-q, are the
characteristic functions of Q, and Q—Q,; i.e., xo,(x)=0 if x¢, and Xxa,(x)=1if
x€Q,, and correspondingly for xo_q,. We assume that the exterior of () is totally
hostile to both populations; that assumption is reflected in the Dirichlet boundary
condition

(1.2) u=v=0 onax(0,c).

A similar analysis could be carried out if the exterior region is only somewhat hostile;
then (1.2) would be replaced with a mixed (or Robin) boundary condition, but the
qualitative features of the analysis would not be greatly affected.

The crucial parameter in our analysis of the effects discussed in [14], [15] is L
When I =0, the growth rates of both populations are positive on {, and zero outside
Q,. As 111, the growth rate of the second population on the region Q—, rises to
equal its growth rate on £,. The case where [=0 corresponds to a situation where the
habitat Q — ), surrounding (2, is made unsuitable for either population, for example,
by systematic clearing or close cultivation; the case where =1 corresponds to a
situation where the first population cannot increase in numbers, even at low densities,
on 0 —Q,, but the second can. This type of situation could occur if the first population
were systematically removed from Q —Q, by the direct or indirect effects of some type
of harvesting, such as logging, that does not significantly affect the second population.
Our fundamental conclusion is that there are values of the parameters ¢, e, ry, and r,
for which (1.1) predicts coexistence when I'=0 but extinction for the first population
when I=1. That conclusion remains valid if the term r,xq,(x) in the first equation of
(1.1) is replaced by ri(xq,(x)+ elxa-q,(x)) for & small. The last observation implies
that moving ! from zero to one improves the overall quality of the total environment
Q for either population in the absence of the other, but can result in the extinction of
the first in the presence of the second. That is, even if both competitors can increase
their numbers in Q —,, the second may still exclude the first if it enjoys a sufficient
advantage in growth rate and carrying capacity on Q-9,. ‘

Before we perform our detailed analysis of the parameter dependence of (1.1) in
§§ 3 and 4, we make a qualitative analysis of the more general model

u, = d,Au+u[R,(x)—u—cv],

(1.3)
v, = d,Av+ v[ Ry(x) —eu—1v],

with boundary condition (1.2). We do not treat the question of global existence of
positive solutions for the time-dependent problem (1.2)-(1.3); that follows readily via
the methods discussed in [1], [13], [22]. We focus on finding criteria for the existence
or nonexistence of equilibria with both densities positive and on the persistence or
extinction of the populations. The criteria we obtain involve eigenvalue problems
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incorporating the coefficients of (1.3). The use of eigenvalues to characterize the
dynamics of dispersing populations is pervasive; see [2], [41-[10], [18], [20], [21],
among many others. To illustrate the idea in a simple case, let us suppose that a
population has constant growth and diffusion rates r and d on a region {) with hostile
exterior. If we ignore self-limitation, then the population density can be modeled by
w(x, 1) satisfying w, =dAw+rw on Q, w=0 on Q. It follows from elementary results
on partial differential equations that the density will increase in time if r — dA,>0 and
decrease if r—dA, <0, where A, is the principal eigenvalue of —A¢ = A¢ on Q with
¢ =0 o0n dC!. Another way to state the condition for population growth that generalizes
nicely to models with spatially varying coefficients is A% = d\,/r<1. The quantity A¥
is the principal eigenvalue for the problem —A¢ = A(r/d)¢ on Q, ¢ =0 on Q. The
conditions we obtain for exclusion or coexistence in (1.3) are, in some sense, analogous
to the conditions R, —eR,>0 and R,—cR, >0 for the nondiffusive model, but they
are cast in terms of the eigenvalues of moderately complicated differential operators.
We then obtain a picture of the ranges of parameters (r,, r,) that admit coexistence
in (1.1) by piecing together a number of parameter-dependent eigenvalue estimates
based pariy on our results for (1.3). Finally, we observe that those estimates imply
the existence of regions in the r,, r, plane where changing the parameter I from zero
to one changes the prediction of the model from coexistence to exclusion. That
observation is a mathematical formulation of the type of effect discussed in [14], [15].

2. Qualitative features of the model. In this section, we consider the reaction-
diffusion system :
u, = diAu+u[R,(x)~u—cv], "
(21)° v.=d.Av+ D[R:(x) —PU - nl -
in 0 x (0, ), subject tc the boundary condition
(2.2) u=p=0 onaQx/(0,co).

‘Here () is a bounded smooth domain in RV, é, ¢, d,, d, are positive parameters, and
for i=1,2, R;e L™(Q) with {xe Q: Ri(x)> 0} having positive Lebesgue measure. The
- steady-state solutions to (2.1)-(2.2) are the solutions to the corresponding elliptic system

—d\Au=u[R,(x)—u- cv]
, . —d)Av = v[Ry(x)— eu—v]
(24) | © u=0=v onaQ.

_Sblutio,ns to (2.3)-(2.4) where both u and v are positive in Q are referred to as

-23) inQ,

coexistence states of (2.1)-(2.2), while solutions to (2.3)-(2.4) with one positive com- .

ponent and one component identically zero are called extinction states to (2.1)~(2.2).

We are interested in solutions that are positive on Q but zero on 841, that is, nonnegative
but not identically zero on (). We use the symbol > 0 to denote such functions.

' _ It was shown in'[4] that the related single-equation problem

» (2‘5) W, = d,AW‘" W[R,(x) - W] in Q X (0’ m)’
(2.6) ' w=0 onaQx(0,)

‘ admits a uniqﬁe. positive steady-state, which we denote 0(d;, R;) precisely when'

A(Ri/d) <1, i=1,2, where A,(m) denotes the principal positive eigenvalue of
= (@2.7) e T =Az=Amz inQ, '
28 z=0 onaQ.
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In general, m may change sign on { as long as m >0 on a set of positive measure.
The steady-state 0(d;, R;) is asymptotically stable with respect to nontrivial nonnegative
initial data, while the eigenfunction corresponding to Ay(m) in (2.7)-(2.8) is unique
up to a scale factor and may be chosen positive in Q. That A,(R;/d;) exists follows
from [19], since {x € (}: R,(x) > 0} has positive Lebesgue measure. Additionally, A,(m)
is continuous as a function from LN/3(9) into R and has the monotonicity property
that m=m', m<m’ on a set of positive Lebesgue measure and the existence of A,(m)
imply the existence of A,(m') and the inequality A,(m") < A (m) (see [4], [11]).
Suppose now that problem (2.3)-(2.4) admits a componentwise positive solution.
Since A, is characterized by having a positive eigenfunction, it follows that -

R, (x)—cv— — ey —
,\1( ,(x)dlcv u) and M(R;(x)dzeu v)

bdth exist and are equal to 1. Consequently, the monotonicity of A,(m) allows us to
assert that A,(Ri(x)/d;)<1, i= 1,2 is a necessary condition for the existence of a
coexistence state for (2.1)-(2.2). Note that

and so A,(Ri(x)/d)<1lis equivalent to d; < A (Ri(x))™". Note also that d;-» 6(d;, R)
is a continuous map from (0, A J(Ri(x)) ") into C5™° (&) (see [4], for example). Suppose
that ¢ and e in (2.1)-(2.2) are held fixed and that'the d;,i=1,2 are allowed to vary.
Then a bifurcation from extinction states to coexistence states occurs. In particular,
there is a transition from the state (d,, d;, 6(dy, R),0) to a coexistence state
(d,, d,, u, v) across the curve ’ '

R,(x)—eb(d,, Rx)) _
(B

in{(d,,d;): d, < M(R(x) 7, da< A (Ry(x))7'}, as well as a transition from the state
(d,, d2,0, 6(d2, R,)) to a coexistence state (d,, d5, u, v) across the corresponding curve

Ry(x) - c8(d;, R;) _
W (B )=t

That these bifurcations occur as indicated can be argued as in [2], [7], where the
special case of R, and R, positive constants is treated. Moreover, the fact that there
are no coexistence states to (2.1)-(2.2) when d, = X, (Ry) ™" or d;= A,(R,) ™" allows us
to conclude as in [3] the existence of a single continuum of coexistence states
(dy, da, uy, u2) tO (2.1)-(2.2), which is of dimension at least two at every point and

which meets the extinction states of the form (d,, d., 6(dy, Ry), 0) at parameter values _‘ ‘

along

A (Rz(x) - Zez(dl » Rl)) =1

and those of the form (d,, d2, 0, 0(d2,_,!22)) at p_airgmeter values along

(R B))_y
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In particular, we know there is a coexistence state associated with every parameter
pair (d,, d,) located between the curves

A (Rz(-x)‘eo(dn R:)) =1 and 2, (R,(x)-—cﬂ(dz, Rz)) =1.
d, d,

Note that when ¢ and e are both equal to zero (an extreme case that reduces
essentially to (2.5)-(2.6)), the curves in Question are the rays {(d, ,dr): d, <
A(R)™, dy=A,(R;)7"} and {(dy, d): dy= A, (R))7, d;<A,(R;)7'}, and the region
between them is {(d,, d,): d, <A,(R,)™", d,<A,(R;)™'}. The biological meaning of this
observation is that when two species do not compete (i.e.,, c=e = 0), then the condition
for coexistence is simply that each species by itself can sustain a positive population
density on . (In the special case where Ry(x)=rxq,(x), R,= rxa,(x)+ Ixa_q,(x)],
the condition for the ith species to sustain a population on Q is simply that, for any
fixed value of r,>0, d, is sufficiently small, or, alternatively, for fixed d;> 0, that r, is
sufficiently large. This can be viewed as a requirement that population increase on
overbalances dispersal out of 0 through 30).) The important mathematical observation
is that the set of values (d,, d,) admitting coexistence lies between the curves defined
by A(Ri(x)/d))=1 (equivalently, A,(R,)™'=d,) for i= 1,2. The continuity of Ay(m)
suggests that it is reasonable to expect that, for ¢ and e small, the region between the
two curves

A (Rx(x)"ca(dz, Rz)) =1 and 2, (Rz(x)-—e()(d,, RI)) =1

dl dz X
should correspond to the subset of {(dy, dy): d, <A,(R,)"", d,<A,(R;)7'} such that
2:9) M(Rx(&)‘(:ﬂ(dz; Rz)) <1

.
and

(2.10) A.(RZ(x)_eo(d”R‘))q.

dz‘

In fact, we have the following result. (Noté that (2.9) and (2.10) are equivalent
to d, <A,(Ry(x)—cO(d,, R,))™" and d,<A(Ry(x)—eb(d,, R,))™, respectively.)

THEOREM 2.1. Suppose that (2.9) and (2.10) hold. Then problem (2.1)-(2.2) has a

coexistence state. In particular, if Ri=R,,c<1 and e< 1, then the region in
- A(dy, &y): d, <Ai(Ry)7',dy < Ay(R,)7'} between the curves

| Al(R«x)-—;«:@z,Rz)):l and M(Rz(x)—;c:(d,,lgo):l

is precisely the set of points (d,, d,) for which (2.9) and (2.10) hald,
Proof. If ‘

A (R.-ce(«:rz,irez))<1 and A (Rz“'ea(anx))<l
1 dl 1 dz s

then o; <0 and 02 <0, where o, and o, arethe unique real numbers so that
B —diAd,+[cO(d,, R,) ~R|]J¢=01¢, - inQ,
$1=0 onaQ

[T
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and .
~dA¢,+[eb(dy, Ry)— R)l¢. =029, infl,
: ¢,=0 ondd

ad;nit positive solutions ¢, and ¢,, as can be deduced from, say, [9, Thm. 6]. Con-
sequently, for e>0 and sufficiently small, 7,,>0 and .. >0, where 7, and 7, are

the unique real numbers so that
dAdy +[Ry—c(1+ £)0(dz, R3)1d1e = Ticb1e inQ,
¢1.=0 onod
and
d,Ay. +[R,—e(1+£)0(dy, R)1¢2e = Toc2e  Infl,
- ¢,.=0 onad
admit positive solutions ¢;. and &,.. Let u=¥5¢,. and 5= (1+¢€)6(d;, Ry). Then
d,Au+[R,—u—cilu
=8¢y In.—Rit c(1+¢£)6(d, R;)+R,— by, — c(1+¢£)6(d., Ry))
= 5¢1e[""xe - 8¢.]
>0
for &> 0 sufficiently small. Also,
d,AD+[Ry—eu— 71D
=(1+¢)0(dy, R))6(d;, Rz) ~Ry+R;— edre— (1+¢€)6(d,, R>)]
= (1+£)0(ds, R;)[ e, — £6(d:, Ra)]
<. |
So (u, D) satisfies o
~d,Au=[R,~u- cblu
—d,ATZ[R,—eu—10]D
Similarly, if @=(1+¢)6(d,, R,) and p= 8¢, then (&, ) satisfies
~d,Aiz[R,-=i—cv]i
—dAp=[R,—ed—]p

in Q.

in{.

Since the Hopf' maximum principl'e [12] guarantees that u<i and p<? for §>0
sufficiently small, the existence of a coexistence state follows from the method of upper

and lower solutions for systems, as in [10].

Suppose now that R, = R,. When ¢ = e =1, (2.3)-(2.4) can have a componentwise

positive solution only if

Ri~u—v R,~u—v :
M(—’—;—"\) =1=/\1(""L"};“"’), —
1

whencéid, = d,. It follows from bifurcation theoretic considerations that .

A (R,(X) ":l(dl’ R‘)) =1 for 511 d, < M(Rx)—l-

e . e e e 2T
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Now suppose that c<1 and e<1. Then

Ry(x)~cb(d,, Ry _ R\(x)-6(d;, R,)
d, d,

forxe(),

50

Ry(x) - cb(d,, R,))
A,( 7 <l

Now, however,

A,(R’(x)-co(d” R,)

: ) = dA,(Ry(x) - c8(d, R,)).

Cohsequently, if

A (Rx(x)";?(dz, R:)) =1,

ihen a'l > a.z. Simﬂarly, if

Al(Rl(x)-:l:(dlf R,)) -1,

then d, <d,. The result now follows from the observation that

Al(mx)-;o(dz.xz))

decreacec ac A. Aarrancas nmd

A, (Rl(x)—ZZ(dh R:))

decreases as d, decreases.
So, indeed, it is the case that when R,=R,,c<1 and e< 1, the region in
{(d,, dy): dy< A((R,)7, d,<A,(R,)™"} between the curves '

(x)—cO(d,, {Ra(x) - d, R,
A;(R (J_c) ‘c:(z Rz))___l and *f( 2(x) :Z( R))=1,

where coexistence states are guaranteed by the methods of global bifurcation theory
corresponds precisely to the set of parameters (d,, d,) satisfying an analytic condition
sufficient for the existence of a coexistence state, namely, (2.9) and (2.10). Note now
that T -

A (R.(f)— ;f:(dz, Rz))

decreases as d, decreases, and also that
A (Rz(x)"eo(dl"Rl))
1
d, /

decreases as d, decreases, independent of whether R, = R,. Hence the question of
whether the region in (d,, d,) parameter space wherein coexistence states are guaranteed
to exist by global bifurcation theory corresponds to the set of parameter values for

e r—— ey TV et e e e
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which (2.9) and (2.10) are simultaneously satisfied is really a question about the relative
locus in parameter space of the boundary curves

AI(RI(X)"CB(dz,Rz))____l g AI(Rz(x)--ee(at,,R,)\)=1.
d, d,

Determining such when R, # R, is, in general, a difficult problem. The most general

statement that can be made is that, for any (d;, d,) with d, < LR a}_nd _c:l'z < AR,
there are sufficiently small & and € so that (2.9) and (2.10) hold for (d,, d,), and hence

(d,, d») lie in the region bounded by the curves

A (Rl(x)“' i;(:(dz, Rz)) -1 and A, (Rz(x)" Zi(dn Rx)) -1

However, from the point of view of applications, such a result is unsatisfactory for
two reasons. First, it does not guarantee that the curves

—0(d>. R . -z
M(Rx(x) ‘Z( 25 2))__:1 and A)(Rz(x) f;‘i(dx,Rl))=l

meet only at the limiting point A (RY)7Y AR, and second, and perhaps more
important, it does not quantify explictly how small & and & must be. Fortunately, in
the models we consider in this article, we are able to determine that a region in an
appropriate parameter space wherein coexistence states are assured by global bifurca-
tion theoretic methods does correspond to the region wherein appropriate analogues
to (2.9) and (2.10) are simultaneously satisfied, for ranges of the competition parameters
that can be explicitly determined.

In the situations just described, we have an «envelope” in (d,, d;) parameter space
described by (2.9) and (2.10) wherein coexistence states to (2.1)-(2.2) are guaranteed
to exist. This “envelope” has the following important property regarding the persistence
of the time-dependent solutions to (2.1)-(2.2).

THEOREM 2.2. Suppose that (2.9) and (2.10) hold. Then, if (u(x, 1), v(x, N)isa
solution to (2.1)-(2.2) with u(x, 0)> #0, v(x, 0)> #0, then there are functions w, and
w,, both positive forxeQl and T>0 so that u(x, 1)= wy(x) and v(x, 1) = wa(x) for all
xeQandt=T '

Proof. Suppose that (u(x, 1), v(x, 1)) solves (2.1)-(2.2) with u(x, 0)> # 0, v(x, 0)>
=0 and that (2.9) and (2.10) hold. Since u(x, t)>0 for xeQ and t>0, v is a lower
solution to -

2.11) pi=d:Ap+(Ry—p)p in Q% (0, ),
(2.12) p=0 on Q% (0,0).

From (2.10), we have that A,(Ry/d2) <1, and, consequently;- 6(d,, R;) is a global
attractor (with respect to nontrivial nonnegative initial data) for (2.11)-(2.12). Con-
sequently, given £>0, there is a T.>0 so that v(x, 1)<(1+¢£)0(ds, R,)(x) for all
t= T.. Then u,=dAu +[Ry(x)—c(1+ £)0(d,, Ry)—ulu +[c(1+¢€)0(d>, R,)—cvlu,
and hence u is an upper solution to

(2.13) w,=d,Aw+[R,—¢(1 +£)60(dy, Rp)—wlw in@x(Te, o),

. (2.19) . w=0 onaQx(T,®),

where w(x, T.)=u(x, T,)>0.in Q. Now, however, (2.9) implies that

A (R' (x)—c( : £)0(dz, RZ)) <1 for >0 sufficiently small.
1
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0(d,, Ry(x)—¢( 1+¢€)6(d,, R,)) is then a global attractor (with respect to nontrivial
nonnegative initial data), so there is T:>T. so that w(x, 1)=36(d,, Ry(x)~-
c(1+¢)6(d,, R>))(x) for t> T'. Since u(x, t)=w(x, t) for 1> T., we may take w,=
30(d,, Ry(x)=ec(1+¢€)6(d,, R.)) for any sufficiently small ¢. A similar argument holds
for v.

sufficient conditions correspond to (2.9) and (2.10) and, moreover, that (2.9) and (2.10)
imply persistence in (2.1)-(2.2). Since the conditions on (d,, d,) were obtained via
global bifurcation theory applied to (2.3)-(2.4), it is not evident that the conditions
are also necessary. However, as we now demonstrate, we can obtain (again for fixed
small ¢ and e) a slightly larger “envelope™ of parameter values (d,, d,) outside of
which problem (2.1)-(2.2) does not Ppossess coexistence states (see also [7D).
Consider (2.3)-(2.4) and suppose that (u, v) solve (2.3)-(2.4) with u>0 and p> 0
in Q. Then v is a lower solution to
~d)Az =[Ry(x)~ z]z inQ,
z=0 onoN.
Since any sufficiently large constant is an upper solution, it follows that there is a
solution larger than v. Since the solution 0(d,, R,) is unique and exists only for
A1(Ry(x)/d,) <1, we have A(Ry(x)/dy) <1 with v= 6(d,, R,). Hence
o —d\Au=[Ry(x)~c6(d,, R)~ulu inQ. )
It follows that u= 0(d,, R,(x)~ c0(d,, R,)), where 0(d,, R\(x)—-c6(d,. R,)) is the
uniane nocitiva ealusiz= o
~d\ Aw=[R,(x)~ c6(d,, R,)-wlw in Q,
' w=0 onaN,

when it exists, and zero 6thverwise.,'1'hus
~dAv=[Ry(x) - e0(dy, Ry(x) - c(dy, R,)) - v]o
in ), and, as a consequence,

Rz(x)‘ea(dl » Rx(x)‘co(dz, R5)) ;
o ] )<i

We have established the following result.
THEOREM 2.3, Suppose that problem (2.1)~(2.2) admits a coexistenqe state. Then

(2.15) - A (R,(x) ~cO(ds, Rdz(x) - eb(d,, Rn))) <1
L L 1

and. .. ‘

216) (R, PR ) <1

It follows from the method of upper and lower solutions that 0(d;, R,)is increasing'

in R,. From this observation, it is easy to verify that (2.9) implies (2.15) and that (2.10)
implies (2.16), as indeed must be the case. Let us now demonstrate that if
A (Rl(x) ~cb(d,, R;(x) —ef(d,, R:))) >1
1
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or

A (Rz(X) —eb(d,, R‘;(x) —c(d,, Rz))) >1,
2

at-least one component of any positive time-dependent solution to (2.1)-(2.2) is driven
to extinction as time increases. In our proof, we make the convention that if m=0
almost everywhere on £ (in which case, problem (2.7)-(2.8) does not admit a positive
solution for A =0), then A,;(m)=+c0. We have the following theorem.

THEOREM 2.4. Assume thatd; <A,(R;)™", fori=1,2. Suppose that (u(x, 1), v(x, 1))
is a solution to (2.1)-(2.2) with u(x, 0)> #0, v(x,0)> #0. If

A, (Rl(x)—co(d:b Rdz(x)"‘eo(dh Rl))) >1,
1

then lim,. u(x, 1) =0, and, if

Ra(x) = e0(d,, R,(x) — c6(d;, Ry))
A,( d, ) >1,

then lim,. v(x, 1) =0, the limits being uniform for x € Q.

Proof. We give the proof of the second assertion of the theorem,; the first is proved
analogously: Suppose that (u(x, 1), v(x, 1)) solves (2.1)-(2.2) with u(x,0)> =0,
v(x, 0)> #0 and that

Ry(x)— ef(d,, Ry(x) — c6(d>, R;))
A,( d, )> l.’

Since u(x, 1)>0 for xeQ and t>0, v is a lower solution to (2.11)-(2.12), as in the
proof of Theorem 2.2. Again, 0(d,, R,) is a global attractor (with respect to nontrivial
nonnegative initial data) for (2.11)-(2.12). Hence, for any & >0, there is a T, so that
v(x, 1)< (1+£)6(d;, R;)(x) forall t=T.. u is then an upper solution to (2.13)-(2.14),
where w(x, T.)=u(x, T.)>0in Q. If

A, (Rl(x) —c(1+£)6(d;, Rz)) <1,
d] :
0(d,, Ry(x)— c(1+¢€)6(d,, Ry)) is positive on Qandisa global attractor (with respect
to nonnegative initial data). If
(Rl )0E, Rz,
d,
then 6(d,; Ry(x)—c(1+¢&)6(d;, R;))=0. In either case, there is T.>T,, so that

u(x, )>(1 —£)0(d,, Ri(x)—c(1+€)6(d,, R;))(x) for 1> T.. As a consequence, v is
a lower solution to

yi=doAy +[Ry(x) —e(1-€)6(dy, Ry(x)
217) —c(1+¢£)6(ds, Ry))—yly inQx(T,,),
y=0 inaQx(T,,),
where y(x, T¢) = v(x, T.). Since

Ry(x)—eb(d,, Rl(x)—ca(dzs R)) .
"‘( 2, )>,".
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then

(R eli=e)0d, R() =1+ ot R;») o
2

for £> 0 and sufficiently small. Consequently, lim, ..., y(x, 1) =0, uniformly for x € ().
Since v(x, t) = y(x, 1) for xe{} and 1> T, the result is established.

Thus far in this section, we have considered the question of existence of coexistence
states for (2.1)-(2.2) and consequences thereof, in the case where R (x) and R,(x)
are appropriate fixed L™ functions on Q and the interaction parameters ¢ and e are
fixed constants, while the diffusion coefficients d, and d, are considered as varying
over appropriate ranges. The information we have obtained has been expressed in
terms ot inequalities involving the principal eigenvalue A,(m) of the weighted elliptic
eigenvalue problem (2.7)-(2.8), where m depends on Ry, R, c,¢,d,, and d,, as in
Theorems 2.1-2.4. Our models view R,(x) and R,(x) as representing parametric families
of such functions. Specifically, we set

Rg(x) = r:[r‘:ﬂl +elvnq,] Ri(x) = "2{:1’3, + "Xﬂ-'ﬂ.},

Gttt ]

where 0, Q, r,, r, are positive, /€[0, 1], and 0= £ « 1, where the physical interpreta-
tion of R,(x) and Ri(x) is as discussed in the previous section. The inequalities involved
in Theorems 2.1-2.4 can now be interpreted as depending .on the parameters
dy,d,,r,r;, 1, and e, as well as the constants ¢ and e.

The most relevant parameter in terms of reflecting change in the nature of the
habitat is L We express the change in the predictions of the model as | is varied in
terms of the other parameters. Specifically, we track how parametric “envelopes” where
coexistence states are guaranteed and parametric “envelopes” outside of which
Coexistence states fail to exist change as I varies from zero to one. In the following,
these “‘envelopes™ are expressed in terms of the modified intrinsic growth rates r,/d,
and r,/d,, instead of d, and d,, the parameters used when R, and R, were considered
fixed. Note that, in the parametric representations of our model, these ratios arise
naturally. For instance, say ¢ =0 and consider Ai(Ry(x)/d\) = Ay(ryxn,/d,). Since
M(nxa,/d)=d,/ riAi(xa,), the basic inequality A,(R,(x)/ d,)<1 is equivalent to
ri/dy> Ay(xq,)- Recall that the rescaling process discussed in detail in the Introduction
allows us to subsume the diffusion rates d, and d, into the growth rates so that a
system of the form

U,=d,AU+[F,xa,- BU - CV]U,
Vi=d,AV+[Flxa,+ Ixa-q,]- EU - FV]V
m§y be rescaled to
@.18) (-‘-;-) 4 =Au+ufry, —u-—co],
v =Av+0[r(xn,+ l¥a-n,) —€eu—v] inQx(0, ),
where we maintain the boundary condition "
(2.19) u=0=v onaQx(0,c0).

In (2.18) the rescaled diffusion rate d = d,/d, measures the dispersal rate of the first
competitor relative to that of the second, and the growth rate coefficients r;=r./d,,
i=1,2, describe the effective rates of growth of the two populations in favorable
habitats (e.g., in ,) when dispersal is considered. (Recall also that it is the quantity

feg e e me s e cmpee
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7./ d; rather than simply 7; that determines whether solutions to the simple linear model
w,=d;Aw+Fw in Q% (0, ), w=0 on 32 x (0, o) will increase or decrease with time.)
The competition coefficients ¢ = Cd,/Fd, and e= Ed,/ Bd, describe the strength of
competitive interactions between two species; if ¢=e=0, then the species do not
compete. Sometimes we may replace the term ryxo, with rlxo,+&la-o,] where
0< & « 1. That corresponds to assuming a low, but nonzero, intrinsic population growth
rate for the first competitor on Q —£,.
The equilibrium system corresponding to (2.18)-(2.19) is

—Au=u[rxq,—u—cvl,
—Av=v[r(xa,* Xa-0,) —eu—7v]
(2.21) u=0=v ondf.

(2.20) inQ,

Of course, unless-d; = d,, the time derivative of u in (2.18) will carry a scaling constant
1/d. However, any conclusions concerning the existence or nonexistence of coexistent
steady states or about long-time coexistence versus extinction, for example, are left
unchanged. As a simple illustration, consider

y,=dAu+[r—ulu inQx(0,),
u=0 ondQx(0, ).

If we divide through by d, we can rewrite the equation as
-;‘w, =Aw+[R—w]w,

where R=r,/d and w=(1/d)u. However, in either case, persistence or extinction is _
determined by the same condition on the size of A(R)=A(r/d) (see [4]).

The results in Theorems 2.1-2.4 have analogues for (2.18)-(2.19), which we
summarize in Corollary 2.5. (Recall that 8(f(x)) denotes the unique (see [4]) positive
solution of

—Aw =vw[f(x) -w] infl,
w=0 ondQ,

should one exist, and denotes zero otherwise.) e
COROLLARY 2.5. Consider (2.18)-(2.19). Let 1=0 or 1 and assume that ry>
Aixa,)s 12> Ai(xa, + Ixa-q,). Then the following hold:
(i) For appropriate quantifiable ranges of ¢ and e (see Theorem 3.5 when 1=1), if -
r, and r, satisfy

(222) Ay(rixa, — c0(r(xa,+ IXn—h,))) <1
and
(2.23) — M(rxe,* a-n,) - ef(rxa,)) <1,

then problem (2.18)-(2.19) admits a coexistence state, and, for .any solution -
(u(x, 1), v(x, 1)) of (2.18)-(2.19) with u(x, 0)> #0, v(x, 0)> #0, there are functions w, . . .
and w,, positive for x€Q, and T>0 so that u(x, 1) = wi(x) and v(x, 1) = wy(x) for all -
xeQandtz=T

(ii) If problem (2.18)-(2.19) admits a coexistence state, then r, and r, must satisfy

(2.24) Ai(nxa, — c8(rxa, + xa-0,) — eo('xXn.)v)) <1
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and
(2.25) . Ai(ra(xa, + Ixp-q,) - e6(r xa, - cO(ry(xqn, + a-0))))) <1.
(i) If _ \
(2.26) A(rixa, - Co("z(an*‘ Ixa-a,) - €6(rixa,))) > 1,
then lim, .. u(x, 1) =0, and, if
‘(2-27) Ai(roxa, + Ixa-q,) — eb(r WXa, =~ €0(ra(xa,+ Ixn-q,)))) > 1,

then lim,.o, v(x, t) =0, for any solution (u(x, t), v(x, 1)) of (2.18)-(2.19) with u(x, 0)>
#0, v(x,0)> 0, the limits being uniform for x € ).

3. Eigenvalue estimation. Corollary 2.5 summarizes the predictions regarding long-
time coexistence versus extinction from our qualitative analysis of (1.1), measured in
terms of the modified intrinsic growth rates r, and r,, the “competition coefficients™
¢ and e, and the “environmental” parameter L Our chief objective is to understand
the changes in these predictions as I moves from zero to one, i.e., as we change from
a situation where both species are allowed to reproduce only in the preserve {2, to a
situation where species u is still allowed to reproduce only in the preserve Q, , While
species v is allowed to reproduce equally well throughout the entire habitat Q. To
achieve our objective, we first make here a detailed analysis of the locus of the sets
described by the simultaneous inequalities (2.22)-(2.23) and (2.24)-(2.25) for I=0 and
for I=1. This process is one of eigenvalue estimation for weighted linear elliptic
Dirichlet boundary value problems, with the results expressed in terms of r, and r,
(and also ¢ and e). Many of the results are in the spirit of [4] or [7].

We begin with the region described by (2.22)-(2.23) when I=0. Recall that for
c eelh 1) the nacitivs colisioo oo 2.15)=(2.15) arc iong-term persistent in the sense
of Corollary 2.5(i) for all (r, r,) satisfying (2.22)~(2.23). We obtain outer bounds on
~ this region as follows. Observe that A(rixa, - ¢6(roxn,)) =1 is equivalent to =

A’(cl)(rz,\/n,); Xn,), where /\'(cﬂ(rzxm); Xn,) denotes the principal eigenvalue of
3.1) —Az+ch(rxg,)z = AXp,z inQ,
’ z=0 onaQ.

It follows as in [7, Lemma 1.2] that the eigenvalue A'(¢) = A'(eB(roxn,); Xa,) is smooth
in ¢ for r,> Ai(xn,) fixed, as is the positive eigenfunction z, provided that we

“make the normalization [, z2=1. Let us denote this z by ¢.. Now fix c*e (0, 1) and
compare (3.1) with

. (3‘2) _ch'+ C*o(rZXﬂx)'pC‘ = AI(C*)th‘llt:”
in Q. Multiplying (3.1) by .. and (3.2) by ¢, and integrating by parts yields

A'(c*)—A’(c)=(c*—c) Iﬂ 0(7‘2,\/“')([!‘.([!‘.-
an.'l’c'/’v

’
from which we obtain that

(3.3) : AM(c*) =In 0("2:\’0,3'/’3“
‘ !ﬂ Xﬂ.‘l’c'

Returning to (3.2), multiplying by ¢, and then integrating by parts, we obtain
| I IV«!«-—I’“‘I 0(r2xa, )92 = A'(c*%) f Xa, Wl
0 13 0
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1t follows from (3.3) that

2
AN c*)+ *plr( ok =_Inlv‘l’c‘l .
(e +e"AHe) Ja Xa,¥%
However, ~
Jo Vo
20 o ) (Xa)-
In Xn,‘l’c' l(Xﬂ,)
Hence
A‘(C*)]’<-—M(xﬂ,)
(3.4) [ 17 ()

Integrating (3.4) between ¢ and 1, we obtain

A'(c)

(3.5) A'(l)——-—;-—._s.x,(xﬂ,)(l-%).

235

Since 6(r.xq,)>0 satisfies [—A+ 6(r2xa,))z = r2xn,2 in 4, A‘(l)'= ry, 5o (3.5) yields

(3.6) n=a'(c)Zcr,+(1 - ) (xa,)

Repeating the preceding analysis for the equation A,(r2xq, —0(nxa,))=1 when e€

(0, 1), we obtain the following theorem.

THEOREM 3.1. Suppose that c, e€ (0, 1) and that (r,, r,) satisfies (2.22)-(2.23) for

1=0. Then (r,, r,) must satisfy (3.6) and
3.7 r, = er;+(1—e)A(xn,)-

Remark. Theorem 3.1 guarantees that the region in (r, r,) parameter space
described by (2.22)-(2.23), where long-term coexistence of the solutions to (1.1) is
assured when ! =0 is contained within the wedge in (r,, r,) parameter space with vertex
at (A,(xn,); A1(xa,)) bounded by the half lines r,=en,+(1-e)A,(xa,) and n=

cro+(1—-c)A(xq,)- See Fig.3.1.

-

3

1 = et (1= )(xa,)
-
(\‘

et
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“~
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‘.\‘ ‘*(\\ X .
W .

rg = ery + (1 = e)halxay)

Ailxa,)

0 Ailxn,)

s

FIG. 3.1. Outside bounds for the region described by (2.22)-(2.23) in which coexistence is guaranteed when

I1=0andcec(0,1).
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Using Theorem 3.1, we may obtain outer bounds on the region described by
(2.24)-(2.25) outside of which a coexistence state to (1.1) is not possible when /=0.
So consider A,(r.xq, — e0(rixn, — c0(r2xn,))) = 1. Since nXn, = ¢0(rxa,) = rixa,, then
6(rixa, — €6(r2xa,)) = 6(r1xa,), and hence

r2Xo, — €8(rixa, = c0(r2xq,)) = roaxo, ~ ed(rxq,).
The monotonicity of A, guarantees that
1= A,(r2xa, — e8(rixn, — c8(r2xa,))) < Ay(roxa, — ed(rixq,))-

Since A,(roxn,—e6(rxq,)) decreases as r, increases and Ai(rixn, —e0(rixa,)) <
A(rixa, = 0(rixa,)) =1, then r, = r,. Hence 8(r2xa,) = 6(r1xa,), so that

0(rixa, — ¢6(r2xa,)) Z 0(rixa, — c0(rixn,)).

It is easy to argue as in [7] that 0(rixa,— c6(rixa,)) =(1 =¢)0(rixq,)- So, if A,(rxg,—
e0(rixa, — c0(r2xa,))) =1, it follows that r,= 5, where & is such that there is a y>0in
€ so that

—Ay+e(1-c)0(rixa,)y=8xa,y inQ,
: y=0 onaQ;
ie, 8=a'e(1 —¢)0(rixa,); Xq,). The arguments leading Mto ﬁxeorem 3.1 imply that
sz e(1-c)r+(1-e(1-c)A,(xa,), '
and hence - -

(3.8) rZe(l-cn+(1—e(1—eDA (v, ).

We now have the following result. )
THEOREM 3.2. Suppose that ¢, e€ (0, 1) and that (r,, r,) satisfies (2.24)-(2.25) for
1=0. Then (r,, r,) must satisfy (3.8) and -

3.9) nzc(l-e)ry+(1-c(1-e))A(xa,)-

Remark. 1t is evident that the wedge in (r,, ry) parameter space given by (3.8)
and (3.9) contains the wedge determined by (3.6) and (3.7).

Later, we will need interior estimates on the boundary curves of the region
described by (2.22)-(2.23) when I = 0. We have two distinct methods of obtaining such
estimates. The two results are markedly different from each other, and, moreover, each
serves a different purpose later in our analysis. Consequently, we include both results,
the first of which we treat next. The second result follows Theorem 3.5, which is proved
in a like manner. We begin our treatment of the first of the two results with the following
observation. ' -

PrOPOSITION 3.3. Suppose that A,(2) and A,(Q,) denote the principal eigenvalues
of —A subject to zero Dirichlet boundary data for Q and Q,, respectively. Then A,({}) <
Ai(xn,) <A (). N :

Proof. Choose w and z positive on Q and y positive on'Q, so that
(3.10) Aw=A,(x0,)Xa,w inQ, .

w=0 onsf,

-Az=MA(0)z InQ,

(3.11) -
z=0 ona;

L PR
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and
-Ay=x1,())y in{,,
(3.12) . e ‘
y=0 ona,.

Multiplying (3.10) by z and (3.11) by w and integrating by parts yields that
A(Q) fo 2w =21 (xa,) Ja X0,2% <Ai(Xa,) fozw, and hence A,(2)<Ai(xq,). Since
dy/ov <0 on 82, by the Hopf maximum principle [12], we have from (3.10) and (3.12)
that

0> w—=
Jon, OV

Jan, OV ov

=| [(-&w)y-(-ay)w]

=1 A(xa,)xe,wy—A()yw
Ja,

(M(Xn,) -A(Q)) -[n wy.

Hence A;(xa,) <A:()), as required.
So now consider A,(r,xa, —€0(r1xqa,)) =1. Let 6> 0 in ), satisfy

-Ad = M(Q)d in Q,,

¢=0 onad,,
and let .
v _{¢ in ﬂls

0 inQ\Q,.

Then ¢ € WH(Q). Since A,(r:xo, —€0(rixn,)) =1, there is a w>0in () so that
—Aw+ef(rxg,)W="rXoWw inQ, -
w=0 onad. .

Since ¢ € WH*(Q) and é>0on Q,, the variational characterization of eigenvalues
implies that

(3.13) ' j IV$|2+eJ. O(r,)(nl)d;zé rz'f 52.’
[+ Q J

Now, however, g lV¢:|2=IQ‘ Vol =a.() jn, ¢*= M) fo ¢ and also Ja ‘;2:
Jq, &> Hence (3.13) yields

(3.14) A () j b*+e j o(nxn,)ci?-zrzj é°.

0 a o o
The maximum principle guarantees that 8(rixq,) =11, S0 we obtain from (3.14) that .
M) +en=r, or n=en+A(Qy). Proceeding analogously, we obtain that :if

Ay(rixe, = c8(rxa,)) =1, then A(Qy)+er=rn or = (1/e)r—(1/¢)A,(,). We have
proved the following theorem. :

B g o R e
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THEOREM 3.4. Suppose that ¢, e€(0,1) and that (r,, r,) satisfies

(3.15) rZen+1,(Q,)
and

: 1 1
(3.16) rzé'; r,—;/\,(ﬂl).

Then, for 1 =0, (r,, r,) satisfies (2.22)-(2.23).

Remark. Theorem 3.4 guarantees that the wedge described by (3.15) and (3.16)
is contained within the region in (r,, r,) parameter space, where, for =0, long-time
coexistence of positive solutions to (1.1) is assured (see Fig. 3.2).

" o
\\ r
&
&
@) +o‘l
\ &
. v/ i)
~N “ﬁ\
,u'\"%m .
™
~

Aslxn,)

o

0 Aixn,)

i ——— s e

Fi1G. 3.2. Outside and inside b;mnds on the boundary curves of the region described by (2.22) and (2.23)
when 1=0 and ¢, e €(0, 1). The outside bounds (i) are given by (3.6) and (3.7), while the inside bounds (ii)

are given by (3.15) and (3.16). -

‘We now turn our attention to the case when I=1. The first issue we address is -
that of obtaining a quantifiable range of the parameters c and e for which part (i) of
Corollary 2.5 is valid. We have the following result.

THEOREM 3.5. ‘Let i, denote the unique positive solution to (3.10) satisfying j'n' Ui=
1, and let p, denote the unique positive solution to (3.11) satisfying {, p2=1. :
Let ‘

4\1/2 .
K, =Javd) i
fa V|

and let K,= ([, p8)">. Then if
’ 1
€8 <
o M(Xn,)lﬂlKle
part (i) of Corollary 2.5 holds for 1=1. * : ' i
(The condition on ce is not needed for parts (ii) and (iii) of Corollary 2.5.) :
Proof. Consider A,(r\xq,—c8(r;))=1. Fix r;> A,(Q) and consider ¢ as varying.

Let y=¢, = c[:(x;_)_bq the unique positive solution to
: —Aw+cb(r)w=r(c)xnw inQ,
(3.17) ‘ w=0 onaN,
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~ satisfying [o ¢ =1. Then, as in the proof of Theorem 3.1, ¢ is smooth in ¢ as is r,,
and, if '=d/dc,

(3.18) —AY'+cO(r)y'+ 0(r)¢ = ryxn '+ rixe, ¢
in Q. Multiplying (3.18) by ¢, integrating by parts, and applying (3.17) yield
(3.19) J 0(r)yl=ri(c) I ¥l
43 0,
Now

j 9("2)¢'§=‘1'['1(C)J wi—j vaclz].s.l(rxc)—:\,(xn.)) 92
fo) c Q - Ja c 0,

Hence

1

ri(c) «ll?‘é-(r.(C)—/\:(Xn.))J ¥,
@, ¢ . 1,
S0 ‘
("1(0))'s")‘1(/\’n,)

c /]~ &

implying that '

n(e) _nle) _Ailxa) Ailxe)
[4 Co = c Co

9

wherever ¢;= c. This last is equivalent to .

rl(c)<A1(Xn,)+"|(co)"\l(,\’n,)
c T ¢ o ’

(3.20)

Since A1(xq,) = r1(0), (3.20) in turn implies that

G21) n(e) _Mba) g
c ¢
| Now consider
» vem _ Ja 0(r)¥h
rl(o)_ j‘n' ll/g 3

as given by (3.19). Let 6= 0(r,). As —A0+ 6>=r,0 in ), we have

J 1v012+j 03=rzf 6>
[ Q je)

Since [, [VOF= A,(Q) [, 67, it follows that

(3.22) I 0= (r,— A, (Q)) I 62,
0 0

Holder’s inequality implies that

2/3 1/3 2/3
Jo=lLer 1L e]"=(],#) e
A - I B o n o
Hence R .
o ' f - \32 F
(3.23) oi([ )" =] o
) ’ 4] [
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Combining (3.22) and (3.23), we have

(3.24) (L 02) 1/2_.<_. (ra= A, Q)02
The Cauchy-Schwarz inequality implies that

o [oas(],) ()"

Combining (3.21), (3.24), and (3.25), we obtain

av1/2
(3.26) D(?c')‘-.‘ié'l‘%&l-f'(rz—h(ﬂ))]ﬂl‘/z (IQ Yo N
e}
Since
Axa,) _ 1
Iﬂ 'V‘IIOF In‘

£ o

{3.26) is equivalent ©

1/2
c )<—l(—:&')'+(’z 1(0))'\1(}\’0.)]9"/2 (}nl'g(:z lz

It follows that, if A,(r,xn, — ¢6(2)) = 1, then r; = A,(xa,) + e, (X)) I/ 2K (r2= 1,(D)),

or, equivalently,

1
e (
CA:(XQ.)IQIIRKI

AN anaiogous argument Snows wdt, 1 Aj(r2— €o(rixa,)] = 1, iicn
(3.28) ’2‘*1(0)-53'9"/21(2(’1"'M(Xn.)}-

It follows that the curve A,(r;xa, — ¢6(r2)) = 1 lies above the curve X,(r,— e6(rxa,)) =1,
and that the regnon in (r,, r;) parameter space determined by (2.22)-(2.23) contains
the wedge given by reversing the inequalities in (3.27) and (3.28), provided that
e|Q|2K, <1/ cAy(xa,)|/?K,, or, equivalently, ce<1/ A,( Xn,)|Q|K1 Kz As this last
is our hypothesis,.the result is established.

Proceeding in an analogous manner in the case where I =0, we obtam the following
result.

THEOREM 3.6. Suppose that ce <1/A}(xq,)|Q|K3. Then the region in (r,, r2) para-
meter space determined by (2.22)-(2.23) for =0 contains the wedge given by

1

(3.27) rn—-1(Q)z "x"Al(Xn,))-

| (3.29) ' fz"'\l(Xn.)gm (n "'\1(Xn.')‘)m :
and
(3.30) 1(Xn.) eM(Xn. )ImllzKa(rx 1(Xn.))

(ii) Itis natural to compare the result of Theorem 3.6 with that of Theorem 3. 4
To this end, observe that (3.6) and (3.7) imply that the region in (ry, r,) space satisfying
(2.22)-(2.23) for I1=0 is contained in the wedge emanating from ()t,(xﬂ,), ,(xm))
given by the inequalities ;

(= M) = MOa) S (h=A0m). .

o " & ey A e 0 A e s e snbon 4 e eE L ke weie e
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Since Theorem 3.6 guarantees that the wedge given by

eM(Xn.)Iﬂll/sz(ﬁ -M(xo,))=r2— A (xa,)
1
= 73
C)H(Xn,)lﬂl K,

emanating from (A,(xq,), A:1(Xn,)) is contained within the region described by (2.22)
and (2.23) for =0, it follows that

(ri=2:(xa,))

1 1
___—————-——.—<—.
CAI(Xﬂ,)IQIl/ZKz c

and that e < ed,(xn,)|Q]?K;; ie., A,(xa,)|2]"/*K,> 1. So, in Theorem 3.6, by “relax-
ing” the slopes of the boundary curves, we obtain a wedge in the interior of the region
described by (2.22) and (2.23) for I=0 having the same vertex, namely,
(A:{xn,), M(xa,)), as the wedge (given in Theorem 3.1) containing the region described
by (2.22) and (2.23) for I=0. Such is not the case for the “interior” wedge given by
Theorem 3.4. However, the slopes of the boundary lines to the wedge given in Theorem
3.4 are the same as those of the boundary lines to the wedge given in Theorem 3.1.
Consequently, the result of Theorem 3.6 is much better suited for an analysis involving
parameter values (r,, ;) near the “critical” point (A,(xq,), A1(xa,)) than is the resuit
of Theorem 3.4. However, the wedge of Theorem 3.4 subsumes the wedge of Theorem
3.6 for values of (r,, r;) sufficiently far removed from (A,(xq,), A1(xn,)) (see Fig. 3.3).

7

alrixn, ~edlraxa, ) =1

~
(L]

~
Q)
A‘n(fsxn. - ef(rixn, )} =1

Ai{xa,) .

¢ ; y n

0 Alxa,)

F1G. 3.3. Comparison of the wedges interior to the region given by (2.22)-(2.23) whenl=0and c,e€ (0, 1).
Wedge (i) is given by Theorem 3.6; wedge (ii) is given by Theorem 3.4.

Before comparing the changes in the predictions of the model as I changes from
zero to one, we require one additional estimate: namely, an upper (or “outside™)
bound on the upper boundary A,(r,xq, — c0(r:—e6(r xq,))) = 1 of the region determined
by (2.24)-(2.25) when I=1. Another caveat is in order at this point. Throughout this
paper, we have implicitly assumed that Q, is a preserve within the larger habitat ();
i.e., ), = Q. However, all the preceding results obtain under the weaker assumptions
that' Q,= and Q-0,# ¢. However, in the following result, we must assume that
Q,cQ.
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So now assume that {}, = Q and consider A,(r,xn, — c8(r.— e0(rixa,))) = 1. Let ¢
now denote the unique positive solution to (3.10) satisfying max,.4 ¢ =1 and choose
K;€(0,1) so that K3xa, = ¢p. Note that K; is a “geometric constant” depending only
on £ and Q,. Since A,(r,xa, —c0(r.—€8(rixn,))) =1, there is a ¢ >0 in Q so that

—Ap+ch(r,—eb(rxn,))e =rxne inQ,

3.31
(331) ¢=0 onaf.

Let us first consider 6(r,xq,). Let 6 = v, where v is a positive constant. Observe that
~A6=1,(xa,)Xn,0
= ’1)(0.5"'“1(,\’0.) - 'l)Xn.a_" 0>+
=rxn,0- 0%+ 8[ o+ (A (xa,) - n)xa,]
= nxn, 8- 6%+ 8xo, (VK3 + (A1(xa,) — 1))
= rixa,0- 8%

provided that yZ r, —A,(xa,)/ Ks- Smce lim, .., (x0)+ 6(nXn,) =0 in Ci (), there is
an re(A,(xn,), ) so that

“8=0(rxn,) < (—-——-'-" — '}é(x“ )) Yo inQ.
3

Since —A0=r,xq,0 — 8>, it follows from the method of upper and lower solutions and
the uniqueness of 6(r,xn,) that

..... /r. - Ay (l’n )\
\2.24) U\’l/\'ﬂ.) = \ K } Yo.

It follows from (3.32)-and the choice of {, that

8(r,— e0(r\xa,)) Z 8(r,~[(r, = As(xa,))/ K:]).
Hence, if ¢ >0 in ) and A*> 0 are such that
5.33) —Ad+cO(r,~[e(r =100V KsDé=1*x0,6 inQ,
¢=0 onaQ,

comparison with (3.31) shows that r; = A*,

Let us now consider (3.33). Let z, now denote the unique solution to (3.11)
satisfying max, .4 2o = 1. Then z,= K, xqn, for some constant K, € (0, 1) dependmg only
on ( and Q,. It is easy to observe that, if s>A,(Q), then (s—1,(Q))z, is a lower
~ solution to

-Aw=sw—w? inQ,

(3.34)
w=0 onafl.

Since any large enough constant is an upper solution to (3.34), (s —A;(Q))z,= 0(s),
and hence, K (s—A,(2))xqn, = 0(s) for any s> A,(Q2). Since 8(s)=0 for s =A,(1), it
is immediate that 6(s)= Ky(s —A,(Q))xq, for all seR. Now compare (3.33) with the
eigenvalue problem : .

‘Ay+c{’2‘[e(fl“')‘l(/\’n.))/Ka] M(ﬂ)}K«tXn.J’ =pXq,y in{l,

3.35
( ) R N » y ={ onaﬂ

CE T,
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A simple integration by parts argument guarantees that if (3.35) admits a positive
solution, A*> u. Notice that there is such a y when

p—c{r;—[e(r, = A(xa,))/ Ks]— (@)} K= A, (xa,)-
Since r, = A%, if A,(rixq,—c8(r,—eb(r1xq,))) =1, it follows that

nE A1(,\’(1,)"’ c{r,—[e(n ")tl(Xn,))/Ksl -L()}K,

or, equivalently,

(3.36) r= () = (M

KK, )("x "‘M(Xn,))-

We have established the following result.

THEOREM 3.7. Assume that (), < Q. Let iy, (respectively, z,) denote the unique
positive solution to (3.10) (respectively, (3.11)) satisfying max..n Yo=1 (respectively,
maX,.; 2= 1). Let K3, K,€(0,1) be such that

o= Ksxa, and zoZ Kixq,.

IfAy(rixq, — cB(r— e0(r.xﬂ,)))<1 then (3.36) holds. In particular, (3.36) holds if (2.24)
is satisfied, and, if (3.36) not satisfied, (2.26) holds so that lim,.. u(x, 1)=0. ,

Remark. The conditions implying that there is coexistence for some (r;, r;) in the
case where /=1, namely, ce <1/A,(Q,)|Q|K, K; and (2.22)-(2.23), can only hold if r,
and r, satisfy (3.36).

4. Comparisons and conclusions. We may now establish that, if ¢, e€ (0, 1), the
model (1.1) admits the behavior suggested by Janzen in [14], [15]. Namely, we show
that there are values (r,, r,) so that, when I=0, long-time persistence of positive
solutions to (1.1) is assured, as in Corollary 2.5(i), but, when I=1, species u can be
expected to go extinct. (Recall that r,, r,, ¢, and e are obtained by rescaling the original
Lotka-Volterra system and hence depend not just on R,, R,, C, and E, but also on
d,, d,, B, and F.)

To establish this, our main result, we show that, 1f c,ee(0, 1), then the curves

Ay(ryxn, = c0(r2)) =1 and A (roxq, — €0(ri1xa,)) = 1 intersect for some value r, > A,(xq,)-
Why does this establish the result? We know that for parameter values (ry, r;) lying
above A,(rxn,—c0(r,—e6(rxn,))) =1, the u component of any positive solution to
(1.1) tends to zero as time tends to infinity, for I =1. We also know that this curve lies
above the curve A,(rxp,—cf(r;))=1 for r,>)«,(xg,) For [=0, the curve A W(raxa,—
e0(r,xn,)) =1 is the lower boundary of the region in which long-term persistence of
positive solutions to (1.1) is assured. Consequently, we see that the main result of the
paper follows from demonstrating that A,(r,xq, — cf(r;)) =1and A W(r2x, — €0(rixq,)) =
1 intersect, since the curves A,(r,xq, — c0(r2)) =1 and Aj{r,xq, — c6(r.—ef(r, Xn,))) 1
emanate from (A,(xn,), A1(R)), the curve A,(r2xn,—ef(rixp,))=1 emanates from
(;\,(xﬂ,), 1(xn,)), and A,(Q) <A,(xa,) (by Proposmon 3. 3) Recall from Theorem 3.5
that if, in addmon,

1
<_—_——_—-_’
1(Xn,)|9|K1K2
then A,(rixa,—¢8(r2)) =1 is the upper boundary of the regxon in (ry, r;) parameter

space for which we know long-term pemstence obtains for posmve solutions to (1.1)
in the case of I=1. .
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Before establishing the intersection of the two designated curves, three remarks
are in order. First, the result shows that there is an open set in (r,, r,) parameter space
where for I=0, positive solutions to (1.1) are long-term coexistent, but, for /=1, the
u component of any positive solution to (1.1) is driven to extinction as time tends to
infinity. For such values of (r,, r,), this property continues to obtain if r,xq, in the
first equation is replaced by r,(xa,+ €lxn-q,) for 0<e« 1 and dependent on (r,, r2).
Second, the result also simultaneously shows that at least for ce<1/ A,(xﬂ,)IQIK,Kz,
there are values (r,,r,) for which the model predicts long-term persistence of positive
solutions to (1.1) for both 1=0 and I=1. Our initial caveat is not diminished: The
models predict the behavior suggested by Janzen only sometimes, and effective refuge
design must be based on detailed biological knowledge of a specific situation. Third,
it follows from the result that all values of the parameters (r,, r,) for which long-term
persistence of positive solutions to (1.1) is assured when /=0 and which are sufficiently
close to the “critical value” (A,(xq,)s A1(Xa,)) are also such that the u-component of
any positive solution to (1.1) when /=1 tends to zero as time tends to infinity. The
estimates of § 3 enable us to quantify in some sense the size of this region, and we do
so once we establish that A,(r,xn,—c6{r2)) =1 and A,(rxq, — €6{rixn,)) =1 iniersect
if ¢, ee(0,1).

THEOREM 4.1. For c,e€(0,1), the curves Ay(rixg,—c0(ry))=1 and A(rxa,—
e6(rixa,)) =1 intersect for some 7> A,(xq,)-

Proof. Consider the continuous map r, = A,(r,xa,—c8(r,)), where r, = A,(xq,)-
Since A,(xn,)> A1(Q2) by Proposition 3.3, it follows that 6(A,(xa,))>0 in Q. Hence

Axe,)xa, — €0(A1(xa,)) <Ai(Xa,)xa, on Q, so that A,(A,(xn,)xa,—c0(Ai(xn,)))>
A(Ay(Xa,)xa,) = 1. Now, however, A,(rxn, —c8(n)) <Ay(rxa,—cn) for r = Ai(xa,),
as 6(r,)<r,. Since ce (0, 1), then A;(xn,— ¢)> 0 necessarily exists and

1 .
Al("x)(ﬂ."""l)="'_''\1(}\’1'3."‘»')"’0 as ry - 0.
1

Consequently, there is a smallest 7,>A,(xn,) for which A,(Fixa,—c8(h))=1; ie.,
(#,, 1) lies on the curve A,(rxn, —c6(r:)) =1. Since we know that, for any ec (0, l)
the curve A,(rzxm ed(r,xn,)) =1 lies below the line r, = ry, the result follows immedi-
ately (see Fig. 4.1). _

As indicated, as a corollary to Theorem 4.1, we have the following theorem, our
main result.

THEOREM 4.2. Suppose thatc, e € (0, 1). Then there are values (r,, r;) of the modified
growth rate parameters so that the following hold:

(i) If 1=0 and (u(x,1), v(x, t)) is .a solution to (1.1) with u(x,0)> %0 and

“p(x, 0)> #0 for x €Y, then there are functions w, and w,, positive for xe Q,; and T>0""

so that u(x, t) = wy(x) and v(x, t)= wy(x) forall xe{) and 1= T;
Gi) If 1=1 and (u(x,t), v(x, 1)) is a solution to (1.1) with u(x, O)> #0 and
v(x, 0)> #0 for x € Q, then lim,. u(x, t) =0, the limit being uniform for all xe Q.

- If, in addition, ce <1/A,(xa,)| K, K., where K, and K, are as in the statement of

Theorem 3.5, then there are also other values of the parameters (r,, r;) so that:

@ii). If I=1 and (u(x, 1), v(x, t)) is a solution to (1.1) with u(x,0)> #0 and
v(x,0)> %0 then there are functions W, and wz, positive for xeQ, and T>0 so that
u(x, )= wy(x) and-v(x, 1) = w,(x) forall xe{) and t= T. : :

The condition ¢, e € (0, 1) is simply what is needed to ensure that the competmon
between species is weak enough that coexistence is possible when I=0; that is, when
‘both species can increase in numbers only on Q, . The biological significance of Theorem

% :
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3

Mlrixn, —era)) =1 -

Ailxa,) >

)

Arlxa,)

FiG. 4.1. Intersection of the curves Ay(rxn,—c8(r;))=1 and Ay(roxn,~ e0(rixa,)) =1 as demonstrated in
Theorem 4.1. The curve A(r:xn,—€0(rxqn,)) =1 is the lower boundary of the region where coexistence is
guaranteed for 1=0; the curve A,(r,xq, — c8(r,)) =1 lies below the upper boundary of the region where u is
excluded by v when 1=1. Thus, points (r,,r;) lying above both curves but not too far above the curve
Ay(r2xa,~ e0(rixa,)) =1 correspond to parameter values for which coexistence is predicted for I =0 (ie., neither
can reproduce itself Q—Q,), but exclusion of the first competitor is predicted when 1= 1 (ie., the second
competitor can reproduce itself in . ~Q,). '

4.2 is that it shows the qualitative aspects of Janzen's observations in [14], [15] can
be reproduced by simple reaction-diffusion models for at least some parameter values.
To proceed further, we must obtain more explicit quantitative information about the
locations of the curves A(nxa, —c0(rxa,)) =1, A\(r2xn, —ef(rixa,)) =1 and the other
curves bounding regions of coexistence or exclusion. To the extent that it is possible,
we try to make our quantitative estimates in the same spirit as in [7], [8], that is, in
forms that separate the coefficients r,r:, ¢ and e from geometric quantities such as
Ai(xa,)-

‘Sluppose now, in addition to the hypotheses of Theorem 4.2, that {1, < Q. It follows
from Theorem 3.7 that, if A;(r1xq, — c8(r,— e6(r,xq,))) =1, then

K3 + cng

= n@)+ (K2 (- G0,

On the other hand, from Theorem 3.1, if A,(roxa, —e6(rixp,)) =1,

_ r,Z en,+(1-e)A;(xq,). .
So the two curves Ay(rixa,—c8(r,—e0(rixn,))) =1 and A,(roxg, - ef(rixn,))=1 cannot
meet prior to the intersection of the lines"

K K,
CEV I rz=A,(n>+(—§,%“;§—;-)(n—A.(xﬂ,>)
and . ' ) R,

@42 r.=en+(1-e)A,(xa,)-

5t e ——— g e et e e PR
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It is a simple matter to calculate that (4.1) and (4.2) intersect when

CK3K4
‘K3+ Ce(l e K3)K4

Since K;€(0, 1) and A,(xn,) > (), 1T > Ai(xq,)- It follows that, if (ry, rp) is such that
(2.22)-(2.23) hold for 1=0 and r,<r¥, then the conclusions of Theorem 4.2 parts @)
and (ii) obtain. .

Now consider A,(r,xn, = ¢6(r2xa,)) = 1, the upper boundary of the region in(r,r)
parameter space, where long-term persistence of positive solutions to (1.1) is assured
when /=0. Make a final additional assumption that

1
0O K g
_ Af(Xn.)KLle

(4.3) n= ",lk"-'Ai(Xn,)’l’ ()'I(Xn,)"'\l(ﬂ))-

Then the ray

(44) ’2=M(Xn,)+m(h“"M(Xn,)),

nZ2A;(xa,), (given in Theorem 3.6) lies within the region in (r,, r,) parameter space,
~ where long-term persistence of positive solutions to (1.1) is assured when I=0. The
lines (4.1) and (4.4) meet when r,=r}*, where

'KxKSKAAl(Xn,)IﬂPn
(K3+ ‘_-'EKa)(A 1(Xn,)lﬂ|”2K1) - (K3Ky)

That r¥* in (4.5" is greater than A,(xg,) follows, since

1
Y P Ty ek |
MR,

(4-5) ’f*=)‘1(Xn.)+C[ ]('\:(Xn.)':)u(ﬂ))-

(see remark (ii) following Theorem 3.6) and

K3+ ceK4>-_l_> 1
K3K4 K4 )

That, in fact, r¥*> rf follows, since

1
G a g
“ = NIk
Consequently, as long as ry eu()\,'()(n,), ‘r’,"*), there will be parameter values (ry, r,) so that
the.results of Theorem 4.2 parts (i) and (ii) hold. We summarize as follows (see Fig. 4.2).
THEOREM 4.3. Suppose that the assumptions of Theorem 4.2 hold. Suppose addi-
tionally that 2= Q. Let r¥ be given by (4.3). Then A,(xa,) <r¥ and, moreover:
() If (ry,r2) is such that (2.22)-(2.23) hold for I=0 and r,€(A\(xn,), r¥), then
the conclusions of Theorem 4.2 parts (i) and (ii) hold. :
Suppose further that - ... ' .- o
[PSO S
T T A Gmy)IQlK
Let r¥* be given by (4.5). Then rf <rf* and, moreover:
(ii) If (r, r2) is such that (2.22)-(2.23) hold for 1=0, r,e(rf, r¥¥), then the

1
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FIG. 4.2. The shaded region is described by Theorem 4.3. If ¢, e (0, 1), then the competition between
species is weak enough that, for 1=0, that is, when the part of Q favoring the increase in numbers of both
species is Q,, there are values of (ry, r;) for which coexistence is assured. Those values lie between the curves
Ay(rixn, — cB(r:xn,)) =1 and A (rxn, — €0(ryxq,)) = 1. In the region of the (r,, r,) plane lying above the curve
Ay(ryxn, — c0(r;— ef(r,xqn,))) = 1, the second competitor excludes the first when | = 1, that is, when the favorable
habitat for the first is only Q, but for the second is all of ). The mechanism of exclusion is that described by
Janzen: The second competitor increases in numbers on Q—, to an extent that, by dispersal into L, it tips
the balance of competition. The line. whose ‘equation is given in (4.1) is an upper bound for the curve
Ay(rixn, = c0(r,— e0(rx,))) =1, so, for values of (r,,r;) above that line but between the curves A,(r,xp,~
cb{rxn,)) =1 and A,(raxn, — €0(roxn,)) = 1, the effects described by Janzen are predicted by our models. That
region is the shaded region in the figure. In fact, the region where the effects are predicted may extend further
upward and to the right than is shown by shading, but we do not have estimates 1o quantify how far. The shaded
region includes all points (1, r;) admitting coexistence with I =0 and with ry <r}¥. Those points correspond to
situations where the effective growth rate r, is only slightly higher than what is needed for the first population
to persist in the absence of the second. In estimating how far upward and 1o the right the shaded region should
extend, we need the additional hypotheses of part (ii) of Theorem 4.3. These may be artifacts of the analysis;
it is possible they could be removed by improving the mathematics. They will be satisfied if Q, is completely
surrounded by 1 —Q, and the competition is relatively weak. In that case, the shaded region extends at least
until the line given-in (4.1) intersects that given by (4.4) at ry=r¥*. For r}<r,<r¥* the Janzen effect is
predicted for those values of (r,, r;) lying between the line given-in (4.1) and the top of the region of coexistence
Jor 1=0. Thus, even if r, is further dway from the value r,= A(xqn,) required for the first species 1o persist by
itself, the Janzen effect is predicted if r; is relatively large so that a moderate increase in the effective growth
rate r; of the second competitor-on Q, would result in exclusion of the first competitor. That result is not
surprising, since either increasing the growth rate r, of the second competitor on §), or expanding the habitat
favorable to the second competitor 1o all of Q by letting =1 but leaving r, fixed would have the effect of
allowing the second competitor to increase in numbers more rapidly, in the first case by reproducing faster in a
small area and in the second by reproducing at the same rate but throughout a larger area. In either case, the
result would be 1o shift the balance of competition in favor of the second competitor, sometimes to the point of
excluding the first.

conclusions of Theorem 4.2 parts (i) and (ii) hold when

) K3+ceK4)
KK, (ri—Ay(xa,))

Remarks, Theorem 4.3 implies that the effects described in [14], [15] are predicted
by our models wherever the parameter r; measuring the effective population growth
rate of the first competitor is close to the critical value A;(xq,) required to sustain a
population of the first competitor in the absence of the second. In this case, “close”

R A](Q)“l’(
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means M(Xn y<r, <r¥ with rf given by (4.3). If A,(xa,) <r,<r¥, then the effects
described by Janzen are predicted by our models whenever the remaining coefficients
of the model admit coexistence when ! =0, i.e., when neither population is allowed to
increase in numbers in the “buffer zone™ Q—Q,. It is easy to see that 3rf/de <0 and
ar¥/ac> 0. Hence, if the coefficient ¢ measuring the impact of the second competitor
on the first is increased, then so is the range of values of r, for which the Janzen effect

is predlcted Conversely, if the coefficient e measuring the competmve impact of the

first species on the second is increased, then the condition r, <rf becomes more
restrictive and that range of values shrinks. If 0= Q and the strength of competition
is not too great, then part (ii) of Theorem 4.3 holds. If rf <r, <rf*, then the Janzen
effect may still occur for some values of r,, specifically those near the upper boundary
of the region in the (r;, r;) plane in which coexistence is predicted in the case where
=0 corresponding to close cultivation or other management of the “buffer zone”
Q. —Q,. Thus, even for larger values of r;, the effect may still occur if a small increase
in the effective growth rate r, of the second population would result in the exclusion
of the first even in the case where [=0. The dependence of r¥ and r¥* on Q, is much
more subiie and compncateu it Cﬁiilu, in pﬁn\.«lplc, be cxamined b Oy aii anal yaxa of 1\3
and K, but that would require a separate article. We can, however, use the results of
§ 3 to make some observations about the effects of varying (), when all other coefficients
in the system (including /) remain fixed.

Thus far, we have demonstrated that, for appropriate and quantlﬁable ranges of
the parameters r;, 15, ¢, and e, the population dynamics inside a preserve {2, of two
species modeled by (1.1) exhibit the sensitivity to the surroundings of the preserve
suggested by Janzen in [14], [15]. The qualitative aspects of our conclusions regarding
(1.1) as the “environmental” or “interference” parameter changes from zero to one
are reiatively insensitive to tne cnoice or preserve i1, as long as 31, 15 4 Gomain properly
contained within the larger habitat Q; i.e., {, = Q. However, the quantitative aspects
of our conclusions are heavily dependent on the choice of £,. It is therefore of interest
to compare and contrast the prescriptions of this section and the preceding one-as £,
itself is considered as a parameter. In general, this is a delicate and difficult issue
which we will not pursue at length at this point. In [6] we considered the effects on

a single population of changing the location of a region of favorable habitat within a . -

larger unfavorable region. The following analysis addresses the corresponding question
in the context of competition. It does not treat the effects described in [14], [15] but
is metivated by related questions about refuge design such as those discussed in [4]-[6]
in the case of a single species. Specifically, the results of § 3 make possible some
immediate observations regarding the predictions about (1.1) if Q, is replaced by a
substantially smaller refuge Q, within Q (£, not necessarily contained within () ) and
we conclude this article with these observations.
We know from Theorem 3.4 that the wedge determined by

(4.6) r,Zer,+A,(Q;)

and .

@n - - n=tn-1a@
N . o ZT—C 1 ¢ 1 1

is contamed within the region of the (ry, r2) plane where cbexistence is predicted as
“described by (2.22)-(2.23) for I=0 and ;. Now, Theorem 3.1 states that, for /=0
and Q,, the region described by (2.22)-(2.23) is contained within the wedge determined

vy
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by

(4.8) rnZer+(1-e)A,(xa,)
and

. 1 1-¢
(4.9) 72§'; "1"‘( p )M(an),

so that the region where coexistence is predicted for /=0 and Q, is contained in this
new wedge. The wedge given by (4.8) and (4.9) will be contained within the wedge
given by (4.6) and (4.7), provided that

(4.10) A,(xﬂz)>(max {—-—1- ——l—-})A,(ﬂ,).

1-c’1—-e

The biological meaning of the wedge in (4.8) and (4.9) being contained in that
given by (4.6) and (4.7) is that the growth rates r, and r, must be larger and more
closely balanced for the competitors to coexist if they can increase their numbers only
on {2, than if they can increase their numbers only on £,. The implication is that Q,
is a better refuge, since the conditions for persistence are less restrictive for Q, than
for Q2;. Condition (4.10) holds if the size [Q,] of 2, is sufficiently small, since A (xa,)
goes to infinity as |Q,| shrinks toward zero; see [4, Thm. 3.1]. Thus, a refuge Q, that
is sufficiently small is less likely to sustain competing populations than a larger refuge
), independent of their relative location in Q, provided that neither population may
increase its numbers in the “buffer zones” Q~,.

In the case where one species can reproduce itself and thus increase its numbers
in Q—Q; and the other cannot, i.e., the case where I =1, the effects of the geometry
of Q; on coexistence are much more complex. Suppose that I=1. If the hypothesis
ce <1/A,(,)|Q|K, K, of Theorem 3.5 is satisfied and remains true when Q, is replaced
by £, (recall that K, K, depend on Q, and change along with 1,(Q,)), then, for both
(1, and Q,, there is a wedge-like region in the (r,, r,) plane determined by (2.22) and
(2.23) for which our models predict coexistence. The region in (r,, r,) parameter space
described by (2.22) and (2.23) for =1 and (3, emanates from (r,, r,) = (A,( Xa,), 1,(D)),
while the region described by (2.22) and (2.23) for I=1 and ), emanates from
(11, ) = (A1(xn,), 2:1(Q)). If A1(xa,) # A1(xn,), then the regions may intersect but neither
contains the other. If (4.10) holds, then A(xa,)> A,(Q,)> A1(Xa,), and hence neither

of the regions can be contained within the other. Assume now, in addition to (4.10), that

(4.11) ce<a(f),, ),
where
A (xa) QK (Q1) Kx(21) A (xa, )KL () Ko(Q,)

a(,;, Q,)=min {

mra)
A(xe)IQK(Q)K(D))
and K;(Q;) for i,j=1, 2 are as given in Theorem 3.5. Then, if A(rz—eb(rixg,)) =1,
(4.12) n-AQ)= eIQII/ZKZ(Ql)(rl - A!‘(Xﬂ,))a‘
While, if A](f]an— Ca(rz)) = l, then ’
1 o
n—Aa .
Gl K (@) 1 Aaltn)-.

(4.13) r=A(Q)2
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-
-

We see that the regions described by (2.22)-(2.23) for I=1 for {, and for £}, must
intersect provided the lines (4.12) and (4.13) intersect at a point (ry, ry) with r; > A (xa,)-
It is an easy matter to determine that (4.12) and (4.13) meet at a point (7,, 7,), where

Ao "
1/2 - e|Q]'2Ky(Q1)A 1 (xn,)
(4.14) - A, (X, lK:(Qz)

—elQI"2K.(Q
Ay (xa,) |02 K1(22) 10" Ka()

. By (4.11), the denominator of the right-hand side of (4.14) is positive, so that

M(A’n,) _ 2
; >Cl\|(X02)IQ K0, el 2 K(Q1)A(xa,)
1
1
- e|Q|V2K,(Q
CA](XQ:)IQI‘ﬂKl(QZ) I ‘ ()
= Ai(xa,)-

Thus, if Q, is relatively small compared to Q, (as required by (4.10)) and if competition
is fairly weak (as required by (4.11)), then the ranges of parameters (r,, r;) where
coexistence is predicted for refuges 2, and ), overlap to some extent in the case where
the second competitor can reproduce itself in the “buffer zone.” As noted previously,
neither of those regions in parameter space contains the other.

In terms of refuge design, the preceding observations imply that when neither -

species may increase its numbers in the “buffer zone™ (1 —Q;, then a refuge {1, that is
enough smaller than ), imposes greater restrictions on both of the growth rate

. a IS SO TP PIGIUIY o RPN o 3
ALAIGIEED (114 15) FOi COTAsicncs than doss 0,5 52 B, son ba ragordad oo o lace ceura
19 72J 1 2z =)

refuge for the competing populations. This agrees with the conventional wisdom on
refuge design. In the case where one species can increase in numbers in the “buffer
zone” but the other cannot, a smaller refuge generally imposes different, but not
necessarily stronger, conditions for coexistence than a larger one, so that direct
comparison of the quality and effectiveness of the two refuges is impossible.

Beyond the specific implications of our discussion of the effects of replacing £,
with 0,, we can make two observations. First, the methods we have developed to study
the problem of assessing the impact of “buffer zones™ can also shed light on other
geometric questions in refuge design. Second, as is already noted in [4]~[6] in the
context of a single species, those questions may have very delicate and subtle answers.
We intend to explore some of them further in future work.

5, General conclusions. We have established that the effects described by Janzen
[14], [15] can be modeled by using reaction-diffusion systems with spatial variation
in their coefficients. The reaction-diffusion models are obtained by.adding diffusion
as a dispersal mechanism to the classical Lotka-Volterra competition model. The
specific situation of a refuge surrounded by a “buffer zone™ is described by considering
the spatial environment as a refuge {}, on which both competitors have positive
population growth rates surrounded by a “buffer zone™ -, where the intrinsic

_growth rate of one competitor is zero. The second competitor might have zero growth
rate on Q—Q,(I=0) or the same positive growth rate as on Q,(/=1). If we assume
that the two competitors can coexist wpeh 1=0, i.e., when neither can increase its
population by reproduction in Q-£,, our analysis. shows that there are generally
values for the growth rates r, and r, that predict coexistence when =0 but predict
exclusion of the first competitor by the second when =1, that is, when the second
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competitor is permitted to increase in numbers on  — (), as well as {2, . This corresponds
to the phenomenon described by Janzen in [14], [15]. The mechanism in our models
is the same as that proposed by Janzen: If the second competitor can raise its population
density sufficiently on £ —£),, it can then flood £, by dispersal from 2 -, and hence
exclude the first competitor on £}, as well as ) — ), . The mathematical analysis suggests
that such an effect is more likely in two situations: when the growth rate r, of the first
competitor is only slightly larger than what is needed to sustain a population in the
absence of the second competitor or when the growth rate r, of the second competitor
is only slightly less than what is needed to exclude the first when neither species can
increase in numbers on the “buffer zone” -Q,. The quantitative details of the
phenomenon are affected by the geometry of £ and Q, and by the other parameters
in the models, specifically the competition coefficients ¢ and e. The results are based
on eigenvalues inequalities. Since the eigenvalues vary continuously with the growth
rate functions, we could replace ryxq, with r,(xn, + €lxa-q,) for £ <1, and the results
would still hold. That means the effect described in [14], [15] would still be predicted
even if the first competitor could increase its numbers to some extent on Q-(,,
provided that the second competitor had a sufficient advantage in growthrateon Q- Q,.
Many open questions remain regarding the effects of spatial variation on the
dynamics of interacting populations. We examine some of these in articles currently
in preparation. In future work, we plan to explore the quantitative aspects of the results
of this article in more detail. We hope specifically to be able to determine numerical
values for the sizes of (} and Q,,r,,r,, and so on, where our analysis is valid and
which can be compared to the values for those quantities encountered in the field.
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